Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Multiple relaxation times are used to capture the numerous stress relaxation modes found in bulk polymer melts. Herein, inverse vulcanization is used to synthesize high sulfur content (≥50 wt%) polymers that only need a single relaxation time to describe their stress relaxation. The S-S bonds in these organopolysulfides undergo dissociative bond exchange when exposed to elevated temperatures, making the bond exchange dominate the stress relaxation. Through the introduction of a dimeric norbornadiene crosslinker that improves thermomechanical properties, we show that it is possible for the Maxwell model of viscoelasticity to describe both dissociative covalent adaptable networks and living polymers, which is one of the few experimental realizations of a Maxwellian material. Rheological master curves utilizing time-temperature superposition were constructed using relaxation times as nonarbitrary horizontal shift factors. Despite advances in inverse vulcanization, this is the first complete characterization of the rheological properties of this class of unique polymeric material.more » « less
-
In this report, a new class of functional chalcogenide hybrid inorganic/organic polymers (CHIPs) bearing free aryl amine groups that are amenable to post-polymerization modifications were synthesized. These functional CHIPs were synthesized via the inverse vulcanization of elemental sulfur with 4-vinylaniline without the need for functional group protection of amines. This polymer is the first example of a polysulfide or CHIP material to carry a useful primary amine functional group which can be successfully post functionalized with acid chlorides and isocyanates to improve the mechanical properties.more » « less
-
Abstract Optical technologies in the long‐wave infrared (LWIR) spectrum (7–14 μm) offer important advantages for high‐resolution thermal imaging in near or complete darkness. The use of polymeric transmissive materials for IR imaging offers numerous cost and processing advantages but suffers from inferior optical properties in the LWIR spectrum. A major challenge in the design of LWIR‐transparent organic materials is that nearly all organic molecules absorb in this spectral window which lies within the so‐called IR‐fingerprint region. We report on a new molecular‐design approach to prepare high refractive index polymers with enhanced LWIR transparency. Computational methods were used to accelerate the design of novel molecules and polymers. Using this approach, we have prepared chalcogenide hybrid inorganic/organic polymers (CHIPs) with enhanced LWIR transparency and thermomechanical properties via inverse vulcanization of elemental sulfur with new organic co‐monomers.more » « less
An official website of the United States government
